Skip to main content

Quantum Algorithms

I've added a few examples to my quantum circuit editor / simulator. The most interesting of which being Grover's Algorithm for unsorted search.

Go ahead and try it out.

Hit "Enter" to evaluate the circuit and get a table of probable outcomes.

The gate F7 makes the fifth qubit in the "|1>" state if the first four qubits are in the state "|0111>" (seven). The circuit is able to determine that "|0111>" is the magic number with over 96% accuracy and only three calls to F7.

I also included an F5 gate. Go ahead and right click those F7 gates away, select the F5 gate, and then drag it into the three places the F7 was. Now it will find "|0101>".

You can save the entire circuit by pressing Ctrl+S. Double click on the GROV, F7, and F5 gates to see what their circuits look like (or to edit them to create your own versions).

Some of the other examples include:

  • Toffoli gate (you can make one simply by dragging to controls onto an X gate, but this is an implementation using only CNots and single-qubit gates)
  • Bell State (the "Hello World" of quantum computing)
  • 2 Qubit QFT and 4 Qubit QFT (again, the editor has it's own quantum fourier transform gate, but these are implementations using only Hadamard gates, controlled rotations, and swaps)
More general info can be found in the help menu on the very top right of the application.

Popular posts from this blog

DIY Solar Powered LoRa Repeater (with Arduino)

In today's video I be built a solar powered LoRa signal repeater to extend the range of my LoRa network. This can easily be used as the basis for a LoRa mesh network with a bit of extra code and additional repeaters. Even if you're not into LoRa networks all of the solar power hardware in this video can be used for any off-the-grid electronics projects or IoT nodes!  

A Lesson in LoRa Module P2P Standards (or the Lack Thereof)

I got a handful of LoRa modules from Reyax a while back, the RYLR896 model based on Semtech SX1276 chips. Instead of using an SPI interface they operate over UART using a small set of AT commands. This made them easier to work with since I didn't have to dig too deeply into a bunch of SPI registers and Semtech specs and they communicate between one another really well. My Espruino JS module for them is available here , which I've used in a few of my YouTube videos. And more recently I've written a MicroPython module for them here .   (A pair of Reyax RYLR896  modules) But, always being on the lookout for different boards and platforms I eventually ended up with a few Maduino LoRa boards. These are cool because they have an Arduino-compatible ATmega328 and the same Semtech LoRa chip (via an RFM95) both integrated on one board. They weren't compatible with Espruino or MicroPython though, and they used the SPI interface instead of AT commands so I knew I would need to lo

Always Secure Your localhost Servers

Recently I was surprised to learn that web browsers allow any site you visit to make requests to resources on localhost (and that they will happily allow unreported mixed-content ). If you'd like to test this out, run an HTTP server on port 8080 (for instance with python -m http.server 8080 ) and then visit this page. You should see "Found: HTTP (8080)" listed and that's because the Javascript on that page made an HTTP GET request to your local server to determine that it was running. Chances are it detected other services as well (for instance if you run Tor or Keybase locally). There are two implications from this that follow: Website owners could potentially use this to collect information about what popular services are running on your local network. Malicious actors could use this to exploit vulnerabilities in those services. Requests made this way are limited in certain ways since they're considered opaque , meaning that the web page isn't able